ENTRELAZAMIENTO CUÁNTICO
POR: ERWIN H GONZALEZ
ERWIN GONZALEZ
El
entrelazamiento cuántico (Quantenverschränkung, originariamente en
alemán) es una propiedad predicha en 1935 por Einstein, Podolsky y Rosen
(en lo sucesivo EPR) en su formulación de la llamada paradoja EPR.
El término fue introducido en 1935 por Erwin Schrödinger para describir un fenómeno de mecánica cuántica que se demuestra en los experimentos pero inicialmente no se comprendió bien su relevancia para la física teórica. Un conjunto de partículas entrelazadas (en su término técnico en inglés: entangled) no pueden definirse como partículas individuales con estados definidos, sino sólo como un sistema con una función de onda única para todo el sistema.
El entrelazamiento es un fenómeno cuántico, sin equivalente clásico, en el cual los estados cuánticos de dos o más objetos se deben describir mediante un estado único que involucra a todos los objetos del sistema, aún cuando los objetos estén separados espacialmente. Esto lleva a correlaciones entre las propiedades físicas observables. Por ejemplo, es posible preparar (enlazar) dos partículas en un solo estado cuántico de espín nulo, de forma que cuando se observe que una gira hacia arriba, la otra automáticamente recibirá una "señal" y se mostrará como girando hacia abajo, pese a la imposibilidad de predecir, según los postulados de la mecánica cuántica, qué estado cuántico se observará.
Esas fuertes correlaciones hacen que las medidas realizadas sobre un sistema parezcan estar influyendo instantáneamente otros sistemas que están enlazados con él, y sugieren que alguna influencia se tendría que estar propagando instantáneamente entre los sistemas, a pesar de la separación entre ellos.
No obstante, no parece que se pueda transmitir información clásica a velocidad superior a la de la luz mediante el entrelazamiento porque no se puede transmitir ninguna información útil a más velocidad que la de la luz. Sólo es posible la transmisión de información usando un conjunto de estados entrelazados en conjugación con un canal de información clásico, también llamado teleportación cuántica. Mas, por necesitar de ese canal clásico, la información útil no podrá superar la velocidad de la luz.
El entrelazamiento cuántico fue en un principio planteado por sus autores (Einstein, Podolsky y Rosen) como un argumento en contra de la mecánica cuántica, en particular con vistas a probar su incompletitud puesto que se puede demostrar que las correlaciones predichas por la mecánica cuántica son inconsistentes con el principio del realismo local, que dice que cada partícula debe tener un estado bien definido, sin que sea necesario hacer referencia a otros sistemas distantes.
Con el tiempo se ha acabado definiendo como uno de los aspectos más peculiares de esta teoría, especialmente desde que el físico norirlandés John S. Bell diera un nuevo impulso a este campo en los años 60 gracias a un refinado análisis de las sutilezas que involucra el entrelazamiento. La propiedad matemática que subyace a la propiedad física de entrelazamiento es la llamada no separabilidad. Además, los sistemas físicos que sufren entrelazamiento cuántico son típicamente sistemas microscópicos (casi todos los que se conocen de hecho lo son), pues, según se entendía, esta propiedad se perdía en el ámbito macroscópico debido al fenómeno de la Decoherencia cuántica. Sin embargo más recientemente, un experimento ha logrado el citado entrelazamiento en diamantes milimétricos, llevando así este fenómeno al nivel de lo macroscópico.
El entrelazamiento es la base de tecnologías en fase de desarrollo, tales como la computación cuántica o la criptografía cuántica, y se ha utilizado en experimentos de teleportación cuántica.
Hoy día se prefiere plantear todas las cuestiones relativas al entrelazamiento usando fotones (en lugar de electrones) como sistema físico a estudiar y considerando sus espines como variables físicas a medir.
El motivo es doble: por una parte es experimentalmente más fácil preparar estados coherentes de dos fotones (o más) altamente correlacionados mediante técnicas de conversión paramétrica a la baja que preparar estados de electrones o núcleos de átomos (en general materia leptónica o bariónica) de análogas propiedades cuánticas; y por otra parte es mucho más fácil hacer razonamientos teóricos sobre un observable de espectro discreto como el espín que sobre uno de espectro continuo, como la posición o el momento lineal.
De acuerdo con el análisis estándar del entrelazamiento cuántico, dos fotones (partículas de luz) que nacen de una misma fuente coherente estarán entrelazados; es decir, ambas partículas serán la superposición de dos estados de dos partículas que no se pueden expresar como el producto de estados respectivos de una partícula.
En otras palabras: lo que le ocurra a uno de los dos fotones influirá de forma instantánea a lo que le ocurra al otro, dado que sus distribuciones de probabilidad están indisolublemente ligadas con la dinámica de ambas. Este hecho, que parece burlar el sentido común, ha sido comprobado experimentalmente, e incluso se ha conseguido el entrelazamiento triple, en el cual se entrelazan tres fotones.
Hoy en día se buscan aplicaciones tecnológicas para esta propiedad cuántica. Una de ellas es la llamada teleportación de estados cuánticos, si bien parecen existir limitaciones importantes a lo que se puede conseguir en principio con dichas técnicas, dado que la transmisión de información parece ir ligada a la transmisión de energía (lo cual en condiciones superlumínicas implicaría la violación de la causalidad relativista).
Es preciso entender que la teleportación de estados cuánticos está muy lejos de parecerse a cualquier concepto de teleportación que se pueda extraer de la ciencia ficción y fuentes similares. La teleportación cuántica sería más bien un calco exacto transmitido instantáneamente (dentro de las restricciones impuestas por el principio de relatividad especial) del estado atómico o molecular de un grupo muy pequeño de átomos. Piénsese que si las dificultades para obtener fuentes coherentes de materia leptónica son grandes, aún lo serán más si se trata de obtener fuentes coherentes de muestras macroscópicas de materia, no digamos ya un ser vivo o un chip con un estado binario definido, por poner un ejemplo.
El estudio de los estados entrelazados tiene gran relevancia en la disciplina conocida como computación cuántica, cuyos sistemas se definirían por el entrelazamiento.
Como complemento adicional tenemos un video explicativos de expertos Fisicos especialistas en el area para tener de esta forma una idea mas concreta del etrelazamiento a la vez de aclarar sus posibles dudas:
La fisica es una de las areas mas hermosas del saber ya que son muchas las implicaciones directas en la comprension de los fenomenos de la naturaleza, por ello resulta de vital importancia conocer cual ha sido su evolucion a travez de la historia, por ende les presentaremos un mapa conceptual con los aspectos mas relevantes de su evolucion realizado con la herramienta tecnologica CMAPTOOLS:
Fuentes referenciales adicionales:
1. https://hipertextual.com/2015/09/entrelazamiento-cuantico
2. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0ahUKEwjczLfC6t3PAhWCLB4KHYRXBLEQFgg9MAQ&url=http%3A%2F%2Fsedici.unlp.edu.ar%2Fbitstream%2Fhandle%2F10915%2F39869%2FDocumento_completo.pdf%3Fsequence%3D1&usg=AFQjCNGTVxkygNmFDJeSQxY2HUZsdFyGqQ&sig2=StiOA6YwYnv7HfmnNi8lVg
3. https://hipertextual.com/2015/10/entrelazamiento-cuantico-2
Figura n.1: La paradoja de
Einstein-Podolsky-Rosen, denominada «Paradoja EPR», consiste en un experimento
mental propuesto por Albert Einstein, Boris
Podolsky y Nathan Rosen en 1935.
El término fue introducido en 1935 por Erwin Schrödinger para describir un fenómeno de mecánica cuántica que se demuestra en los experimentos pero inicialmente no se comprendió bien su relevancia para la física teórica. Un conjunto de partículas entrelazadas (en su término técnico en inglés: entangled) no pueden definirse como partículas individuales con estados definidos, sino sólo como un sistema con una función de onda única para todo el sistema.
Figura n.2: Erwin Schrodinger, Fisico austriaco galardonado con en premio Nobel de Física en 1934.
El entrelazamiento es un fenómeno cuántico, sin equivalente clásico, en el cual los estados cuánticos de dos o más objetos se deben describir mediante un estado único que involucra a todos los objetos del sistema, aún cuando los objetos estén separados espacialmente. Esto lleva a correlaciones entre las propiedades físicas observables. Por ejemplo, es posible preparar (enlazar) dos partículas en un solo estado cuántico de espín nulo, de forma que cuando se observe que una gira hacia arriba, la otra automáticamente recibirá una "señal" y se mostrará como girando hacia abajo, pese a la imposibilidad de predecir, según los postulados de la mecánica cuántica, qué estado cuántico se observará.
Esas fuertes correlaciones hacen que las medidas realizadas sobre un sistema parezcan estar influyendo instantáneamente otros sistemas que están enlazados con él, y sugieren que alguna influencia se tendría que estar propagando instantáneamente entre los sistemas, a pesar de la separación entre ellos.
Figura n.3: Ejemplo mental sobre entrelazamiento cuántico.
No obstante, no parece que se pueda transmitir información clásica a velocidad superior a la de la luz mediante el entrelazamiento porque no se puede transmitir ninguna información útil a más velocidad que la de la luz. Sólo es posible la transmisión de información usando un conjunto de estados entrelazados en conjugación con un canal de información clásico, también llamado teleportación cuántica. Mas, por necesitar de ese canal clásico, la información útil no podrá superar la velocidad de la luz.
El entrelazamiento cuántico fue en un principio planteado por sus autores (Einstein, Podolsky y Rosen) como un argumento en contra de la mecánica cuántica, en particular con vistas a probar su incompletitud puesto que se puede demostrar que las correlaciones predichas por la mecánica cuántica son inconsistentes con el principio del realismo local, que dice que cada partícula debe tener un estado bien definido, sin que sea necesario hacer referencia a otros sistemas distantes.
Con el tiempo se ha acabado definiendo como uno de los aspectos más peculiares de esta teoría, especialmente desde que el físico norirlandés John S. Bell diera un nuevo impulso a este campo en los años 60 gracias a un refinado análisis de las sutilezas que involucra el entrelazamiento. La propiedad matemática que subyace a la propiedad física de entrelazamiento es la llamada no separabilidad. Además, los sistemas físicos que sufren entrelazamiento cuántico son típicamente sistemas microscópicos (casi todos los que se conocen de hecho lo son), pues, según se entendía, esta propiedad se perdía en el ámbito macroscópico debido al fenómeno de la Decoherencia cuántica. Sin embargo más recientemente, un experimento ha logrado el citado entrelazamiento en diamantes milimétricos, llevando así este fenómeno al nivel de lo macroscópico.
El entrelazamiento es la base de tecnologías en fase de desarrollo, tales como la computación cuántica o la criptografía cuántica, y se ha utilizado en experimentos de teleportación cuántica.
Hoy día se prefiere plantear todas las cuestiones relativas al entrelazamiento usando fotones (en lugar de electrones) como sistema físico a estudiar y considerando sus espines como variables físicas a medir.
El motivo es doble: por una parte es experimentalmente más fácil preparar estados coherentes de dos fotones (o más) altamente correlacionados mediante técnicas de conversión paramétrica a la baja que preparar estados de electrones o núcleos de átomos (en general materia leptónica o bariónica) de análogas propiedades cuánticas; y por otra parte es mucho más fácil hacer razonamientos teóricos sobre un observable de espectro discreto como el espín que sobre uno de espectro continuo, como la posición o el momento lineal.
De acuerdo con el análisis estándar del entrelazamiento cuántico, dos fotones (partículas de luz) que nacen de una misma fuente coherente estarán entrelazados; es decir, ambas partículas serán la superposición de dos estados de dos partículas que no se pueden expresar como el producto de estados respectivos de una partícula.
En otras palabras: lo que le ocurra a uno de los dos fotones influirá de forma instantánea a lo que le ocurra al otro, dado que sus distribuciones de probabilidad están indisolublemente ligadas con la dinámica de ambas. Este hecho, que parece burlar el sentido común, ha sido comprobado experimentalmente, e incluso se ha conseguido el entrelazamiento triple, en el cual se entrelazan tres fotones.
Hoy en día se buscan aplicaciones tecnológicas para esta propiedad cuántica. Una de ellas es la llamada teleportación de estados cuánticos, si bien parecen existir limitaciones importantes a lo que se puede conseguir en principio con dichas técnicas, dado que la transmisión de información parece ir ligada a la transmisión de energía (lo cual en condiciones superlumínicas implicaría la violación de la causalidad relativista).
Figura n.5: teleportación de estados cuánticos
Es preciso entender que la teleportación de estados cuánticos está muy lejos de parecerse a cualquier concepto de teleportación que se pueda extraer de la ciencia ficción y fuentes similares. La teleportación cuántica sería más bien un calco exacto transmitido instantáneamente (dentro de las restricciones impuestas por el principio de relatividad especial) del estado atómico o molecular de un grupo muy pequeño de átomos. Piénsese que si las dificultades para obtener fuentes coherentes de materia leptónica son grandes, aún lo serán más si se trata de obtener fuentes coherentes de muestras macroscópicas de materia, no digamos ya un ser vivo o un chip con un estado binario definido, por poner un ejemplo.
El estudio de los estados entrelazados tiene gran relevancia en la disciplina conocida como computación cuántica, cuyos sistemas se definirían por el entrelazamiento.
Figura n.6: ejemplo mental sencillo de transmision cuantica de informacion.
Como complemento adicional tenemos un video explicativos de expertos Fisicos especialistas en el area para tener de esta forma una idea mas concreta del etrelazamiento a la vez de aclarar sus posibles dudas:
Fuentes referenciales adicionales:
1. https://hipertextual.com/2015/09/entrelazamiento-cuantico
2. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0ahUKEwjczLfC6t3PAhWCLB4KHYRXBLEQFgg9MAQ&url=http%3A%2F%2Fsedici.unlp.edu.ar%2Fbitstream%2Fhandle%2F10915%2F39869%2FDocumento_completo.pdf%3Fsequence%3D1&usg=AFQjCNGTVxkygNmFDJeSQxY2HUZsdFyGqQ&sig2=StiOA6YwYnv7HfmnNi8lVg
3. https://hipertextual.com/2015/10/entrelazamiento-cuantico-2